Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Food Res Int ; 184: 114276, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609208

RESUMO

Inulin, a polysaccharide characterized by a ß-2,1 fructosyl-fructose structure terminating in a glucosyl moiety, is naturally present in plant roots and tubers. Current methods provide average degrees of polymerization (DP) but lack information on the distribution and absolute concentration of each DP. To address this limitation, a reproducible (CV < 10 %) high throughput (<2 min/sample) MALDI-MRMS approach capable of characterizing and quantifying inulin molecules in plants using matched-matrix consisting of α-cyano-4-hydroxycinnamic acid butylamine salt (CHCA-BA), chicory inulin-12C and inulin-13C was developed. The method identified variation in chain lengths and concentration of inulin across various plant species. Globe artichoke hearts, yacón and elephant garlic yielded similar concentrations at 15.6 g/100 g dry weight (DW), 16.8 g/100 g DW and 17.7 g/100 g DW, respectively, for DP range between 9 and 22. In contrast, Jerusalem artichoke demonstrated the highest concentration (53.4 g/100 g DW) within the same DP ranges. Jerusalem artichoke (DPs 9-32) and globe artichoke (DPs 9-36) showed similar DP distributions, while yacón and elephant garlic displayed the narrowest and broadest DP ranges (DPs 9-19 and DPs 9-45, respectively). Additionally, qualitative measurement for all inulin across all plant samples was feasible using the peak intensities normalized to Inulin-13C, and showed that the ratio of yacón, elephant garlic and Jerusalem was approximately one, two and three times that of globe artichoke. This MALDI-MRMS approach provides comprehensive insights into the structure of inulin molecules, opening avenues for in-depth investigations into how DP and concentration of inulin influence gut health and the modulation of noncommunicable diseases, as well as shedding light on refining cultivation practices to elevate the beneficial health properties associated with specific DPs.


Assuntos
Produtos Biológicos , Cynara scolymus , Alho , Helianthus , Inulina , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Antioxidantes , Espectroscopia de Ressonância Magnética , Lasers
2.
J Proteome Res ; 23(3): 956-970, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38310443

RESUMO

We present compelling evidence for the existence of an extended innate viperin-dependent pathway, which provides crucial evidence for an adaptive response to viral agents, such as SARS-CoV-2. We show the in vivo biosynthesis of a family of novel endogenous cytosine metabolites with potential antiviral activities. Two-dimensional nuclear magnetic resonance (NMR) spectroscopy revealed a characteristic spin-system motif, indicating the presence of an extended panel of urinary metabolites during the acute viral replication phase. Mass spectrometry additionally enabled the characterization and quantification of the most abundant serum metabolites, showing the potential diagnostic value of the compounds for viral infections. In total, we unveiled ten nucleoside (cytosine- and uracil-based) analogue structures, eight of which were previously unknown in humans allowing us to propose a new extended viperin pathway for the innate production of antiviral compounds. The molecular structures of the nucleoside analogues and their correlation with an array of serum cytokines, including IFN-α2, IFN-γ, and IL-10, suggest an association with the viperin enzyme contributing to an ancient endogenous innate immune defense mechanism against viral infection.


Assuntos
COVID-19 , Humanos , Estrutura Molecular , SARS-CoV-2 , Imunidade Inata , Citosina , Redes e Vias Metabólicas , Antivirais
3.
Am J Physiol Cell Physiol ; 326(1): C10-C26, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37955119

RESUMO

Sarcoidosis embodies a complex inflammatory disorder spanning multiple systems, with its origin remaining elusive. It manifests as the infiltration of inflammatory cells that coalesce into distinctive noncaseous granulomas within afflicted organs. Unraveling this disease necessitates the utilization of cellular or tissue-based imaging methods to both visualize and characterize the biochemistry of these sarcoid granulomas. Although hematoxylin and eosin stain, standard in routine use alongside cytological stains have found utility in diagnosis within clinical contexts, special stains such as Masson's trichrome, reticulin, methenamine silver, and Ziehl-Neelsen provide additional varied perspectives of sarcoid granuloma imaging. Immunohistochemistry aids in pinpointing specific proteins and gene expressions further characterizing these granulomas. Finally, recent advances in spatial transcriptomics promise to divulge profound insights into their spatial orientation and three-dimensional (3-D) molecular mapping. This review focuses on a range of preexisting imaging methods employed for visualizing sarcoid granulomas at the cellular level while also exploring the potential of the latest cutting-edge approaches like spatial transcriptomics and matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI), with the overarching goal of shedding light on the trajectory of sarcoidosis research.


Assuntos
Granuloma , Sarcoidose , Humanos , Granuloma/diagnóstico por imagem , Sarcoidose/diagnóstico por imagem
4.
Sci Rep ; 13(1): 22560, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38110595

RESUMO

This study explores the sphingolipid class of oligohexosylceramides (OHCs), a rarely studied group, in barley (Hordeum vulgare L.) through a new lipidomics approach. Profiling identified 45 OHCs in barley (Hordeum vulgare L.), elucidating their fatty acid (FA), long-chain base (LCB) and sugar residue compositions; and was accomplished by monophasic extraction followed by reverse-phased high performance liquid chromatography electrospray ionisation quadrupole-time-of-flight tandem mass spectrometry (HPLC-ESI-QqTOF-MS/MS) employing parallel reaction monitoring (PRM). Results revealed unknown ceramide species and highlighted distinctive FA and LCB compositions when compared to other sphingolipid classes. Structurally, the OHCs featured predominantly trihydroxy LCBs associated with hydroxylated FAs and oligohexosyl residues consisting of two-five glucose units in a linear 1 → 4 linkage. A survey found OHCs in tissues of major cereal crops while noting their absence in conventional dicot model plants. This study found salinity stress had only minor effects on the OHC profile in barley roots, leaving questions about their precise functions in plant biology unanswered.


Assuntos
Glicoesfingolipídeos Neutros , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Grão Comestível , Esfingolipídeos , Ácidos Graxos , Espectrometria de Massas por Ionização por Electrospray/métodos
5.
Plant Direct ; 7(9): e528, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37692128

RESUMO

Southern blight disease, caused by the fungal pathogen Athelia rolfsii, suppresses plant growth and reduces product yield in Cannabis sativa agriculture. Mechanisms of pathology of this soil-borne disease remain poorly understood, with disease management strategies reliant upon broad-spectrum antifungal use. Exposure to chitosan, a natural elicitor, has been proposed as an alternative method to control diverse fungal diseases in an eco-friendly manner. In this study, C. sativa plants were grown in the Root-TRAPR system, a transparent hydroponic growth device, where plant roots were primed with .2% colloidal chitosan prior to A. rolfsii inoculation. Both chitosan-primed and unprimed inoculated plants displayed classical symptoms of wilting and yellowish leaves, indicating successful infection. Non-primed infected plants showed increased shoot defense responses with doubling of peroxidase and chitinase activities. The levels of growth and defense hormones including auxin, cytokinin, and jasmonic acid were increased 2-5-fold. In chitosan-primed infected plants, shoot peroxidase activity and phytohormone levels were decreased 1.5-4-fold relative to the unprimed infected plants. When compared with shoots, roots were less impacted by A. rolfsii infection, but the pathogen secreted cell wall-degrading enzymes into the root-growth solution. Chitosan priming inhibited root growth, with root lengths of chitosan-primed plants approximately 65% shorter than the control, but activated root defense responses, with root peroxidase activity increased 2.7-fold along with increased secretion of defense proteins. The results suggest that chitosan could be an alternative platform to manage southern blight disease in C. sativa cultivation; however, further optimization is required to maximize effectiveness of chitosan.

6.
Plant Environ Interact ; 4(3): 115-133, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37362423

RESUMO

Fungal pathogens pose a major threat to Cannabis sativa production, requiring safe and effective management procedures to control disease. Chitin and chitosan are natural molecules that elicit plant defense responses. Investigation of their effects on C. sativa will advance understanding of plant responses towards elicitors and provide a potential pathway to enhance plant resistance against diseases. Plants were grown in the in vitro Root-TRAPR system and treated with colloidal chitin and chitosan. Plant morphology was monitored, then plant tissues and exudates were collected for enzymatic activity assays, phytohormone quantification, qPCR analysis and proteomics profiling. Chitosan treatments showed increased total chitinase activity and expression of pathogenesis-related (PR) genes by 3-5 times in the root tissues. In the exudates, total peroxidase and chitinase activities and levels of defense proteins such as PR protein 1 and endochitinase 2 were increased. Shoot development was unaffected, but root development was inhibited after chitosan exposure. In contrast, chitin treatments had no significant impact on any defense parameters, including enzymatic activities, hormone quantities, gene expression levels and root secreted proteins. These results indicate that colloidal chitosan, significantly enhancing defense responses in C. sativa root system, could be used as a potential elicitor, particularly in hydroponic scenarios to manage crop diseases.

7.
PLoS One ; 18(4): e0285007, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37104509

RESUMO

Floral chemical defence strategies remain under-investigated, despite the significance of flowers to plant fitness. We used cyanogenic glycosides (CNglycs)-constitutive secondary metabolites that deter herbivores by releasing hydrogen cyanide, but also play other metabolic roles-to ask whether more apparent floral tissues and those most important for fitness are more defended as predicted by optimal defence theories, and what fine-scale CNglyc localisation reveals about function(s)? Florets of eleven species from the Proteaceae family were dissected to quantitatively compare the distribution of CNglycs within flowers and investigate whether distributions vary with other floral/plant traits. CNglycs were identified and their localisation in florets was revealed by matrix-assisted laser desorption ionisation mass spectrometry imaging (MALDI-MSI). We identified extremely high CNglyc content in floral tissues of several species (>1% CN), highly tissue-specific CNglyc distributions within florets, and substantial interspecific differences in content distributions, not all consistent with optimal defence hypotheses. Four patterns of within-flower CNglyc allocation were identified: greater tissue-specific allocations to (1) anthers, (2) pedicel (and gynophore), (3) pollen presenter, and (4) a more even distribution among tissues with higher content in pistils. Allocation patterns were not correlated with other floral traits (e.g. colour) or taxonomic relatedness. MALDI-MSI identified differential localisation of two tyrosine-derived CNglycs, demonstrating the importance of visualising metabolite localisation, with the diglycoside proteacin in vascular tissues, and monoglycoside dhurrin across floral tissues. High CNglyc content, and diverse, specific within-flower localisations indicate allocations are adaptive, highlighting the importance of further research into the ecological and metabolic roles of floral CNglycs.


Assuntos
Proteaceae , Flores/metabolismo , Glicosídeos/metabolismo , Pólen , Plantas , Polinização
8.
Neurobiol Dis ; 176: 105933, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36436748

RESUMO

In Huntington's disease (HD), a key pathological feature includes the development of inclusion-bodies of fragments of the mutant huntingtin protein in the neurons of the striatum and hippocampus. To examine the molecular changes associated with inclusion-body formation, we applied MALDI-mass spectrometry imaging and deuterium pulse labelling to determine lipid levels and synthesis rates in the hippocampus of a transgenic mouse model of HD (R6/1 line). The R6/1 HD mice lacked inclusions in the hippocampus at 6 weeks of age (pre-symptomatic), whereas inclusions were pervasive by 16 weeks of age (symptomatic). Hippocampal subfields (CA1, CA3 and DG), which formed the highest density of inclusion formation in the mouse brain showed a reduction in the relative abundance of neuron-enriched lipids that have roles in neurotransmission, synaptic plasticity, neurogenesis, and ER-stress protection. Lipids involved in the adaptive response to ER stress (phosphatidylinositol, phosphatidic acid, and ganglioside classes) displayed increased rates of synthesis in HD mice relative to WT mice at all the ages examined, including prior to the formation of the inclusion bodies. Our findings, therefore, support a role for ER stress occurring pre-symptomatically and potentially contributing to pathological mechanisms underlying HD.


Assuntos
Doença de Huntington , Camundongos , Animais , Camundongos Transgênicos , Doença de Huntington/metabolismo , Neurônios/metabolismo , Hipocampo/metabolismo , Modelos Animais de Doenças , Lipídeos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo
9.
J Am Soc Mass Spectrom ; 33(12): 2203-2214, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36371691

RESUMO

Ultrahigh resolution mass spectrometry (UHR-MS) coupled with direct infusion (DI) electrospray ionization offers a fast solution for accurate untargeted profiling. Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometers have been shown to produce a wealth of insights into complex chemical systems because they enable unambiguous molecular formula assignment even if the vast majority of signals is of unknown identity. Interlaboratory comparisons are required to apply this type of instrumentation in quality control (for food industry or pharmaceuticals), large-scale environmental studies, or clinical diagnostics. Extended comparisons employing different FT-ICR MS instruments with qualitative direct infusion analysis are scarce since the majority of detected compounds cannot be quantified. The extent to which observations can be reproduced by different laboratories remains unknown. We set up a preliminary study which encompassed a set of 17 laboratories around the globe, diverse in instrumental characteristics and applications, to analyze the same sets of extracts from commercially available standard human blood plasma and Standard Reference Material (SRM) for blood plasma (SRM1950), which were delivered at different dilutions or spiked with different concentrations of pesticides. The aim of this study was to assess the extent to which the outputs of differently tuned FT-ICR mass spectrometers, with different technical specifications, are comparable for setting the frames of a future DI-FT-ICR MS ring trial. We concluded that a cluster of five laboratories, with diverse instrumental characteristics, showed comparable and representative performance across all experiments, setting a reference to be used in a future ring trial on blood plasma.

10.
Front Vet Sci ; 9: 905929, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968003

RESUMO

Objectives: Firstly, to compare differences in insulin, adiponectin, leptin, and measures of insulin sensitivity between diabetic cats in remission and healthy control cats, and determine whether these are predictors of diabetic relapse. Secondly, to determine if these hormones are associated with serum metabolites known to differ between groups. Thirdly, if any of the hormonal or identified metabolites are associated with measures of insulin sensitivity. Animals: Twenty cats in diabetic remission for a median of 101 days, and 21 healthy matched control cats. Methods: A casual blood glucose measured on admission to the clinic. Following a 24 h fast, a fasted blood glucose was measured, and blood sample taken for hormone (i.e., insulin, leptin, and adiponectin) and untargeted metabolomic (GC-MS and LC-MS) analysis. A simplified IVGGT (1 g glucose/kg) was performed 3 h later. Cats were monitored for diabetes relapse for at least 9 months (270 days). Results: Cats in diabetic remission had significantly higher serum glucose and insulin concentrations, and decreased insulin sensitivity as indicated by an increase in HOMA and decrease in QUICKI and Bennett indices. Leptin was significantly increased, but there was no difference in adiponectin (or body condition score). Several significant correlations were found between insulin sensitivity indices, leptin, and serum metabolites identified as significantly different between remission and control cats. No metabolites were significantly correlated with adiponectin. No predictors of relapse were identified in this study. Conclusion and clinical importance: Insulin resistance, an underlying factor in diabetic cats, persists in diabetic remission. Cats in remission should be managed to avoid further exacerbating insulin resistance.

11.
Plant Methods ; 18(1): 46, 2022 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35397608

RESUMO

BACKGROUND: Plant growth devices, for example, rhizoponics, rhizoboxes, and ecosystem fabrication (EcoFAB), have been developed to facilitate studies of plant root morphology and plant-microbe interactions in controlled laboratory settings. However, several of these designs are suitable only for studying small model plants such as Arabidopsis thaliana and Brachypodium distachyon and therefore require modification to be extended to larger plant species like crop plants. In addition, specific tools and technical skills needed for fabricating these devices may not be available to researchers. Hence, this study aimed to establish an alternative protocol to generate a larger, modular and reusable plant growth device based on different available resources. RESULTS: Root-TRAPR (Root-Transparent, Reusable, Affordable three-dimensional Printed Rhizo-hydroponic) system was successfully developed. It consists of two main parts, an internal root growth chamber and an external structural frame. The internal root growth chamber comprises a polydimethylsiloxane (PDMS) gasket, microscope slide and acrylic sheet, while the external frame is printed from a three-dimensional (3D) printer and secured with nylon screws. To test the efficiency and applicability of the system, industrial hemp (Cannabis sativa) was grown with or without exposure to chitosan, a well-known plant elicitor used for stimulating plant defense. Plant root morphology was detected in the system, and plant tissues were easily collected and processed to examine plant biological responses. Upon chitosan treatment, chitinase and peroxidase activities increased in root tissues (1.7- and 2.3-fold, respectively) and exudates (7.2- and 21.6-fold, respectively). In addition, root to shoot ratio of phytohormone contents were increased in response to chitosan. Within 2 weeks of observation, hemp plants exhibited dwarf growth in the Root-TRAPR system, easing plant handling and allowing increased replication under limited growing space. CONCLUSION: The Root-TRAPR system facilitates the exploration of root morphology and root exudate of C. sativa under controlled conditions and at a smaller scale. The device is easy to fabricate and applicable for investigating plant responses toward elicitor challenge. In addition, this fabrication protocol is adaptable to study other plants and can be applied to investigate plant physiology in different biological contexts, such as plant responses against biotic and abiotic stresses.

12.
NPJ Parkinsons Dis ; 7(1): 94, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34650080

RESUMO

Characterisation and diagnosis of idiopathic Parkinson's disease (iPD) is a current challenge that hampers both clinical assessment and clinical trial development with the potential inclusion of non-PD cases. Here, we used a targeted mass spectrometry approach to quantify 38 metabolites extracted from the serum of 231 individuals. This cohort is currently one of the largest metabolomic studies including iPD patients, drug-naïve iPD, healthy controls and patients with Alzheimer's disease as a disease-specific control group. We identified six metabolites (3-hydroxykynurenine, aspartate, beta-alanine, homoserine, ornithine (Orn) and tyrosine) that are significantly altered between iPD patients and control participants. A multivariate model to predict iPD from controls had an area under the curve (AUC) of 0.905, with an accuracy of 86.2%. This panel of metabolites may serve as a potential prognostic or diagnostic assay for clinical trial prescreening, or for aiding in diagnosing pathological disease in the clinic.

13.
Metabolites ; 11(7)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34357361

RESUMO

Improved methods are required for investigating the systemic metabolic effects of SARS-CoV-2 infection and patient stratification for precision treatment. We aimed to develop an effective method using lipid profiles for discriminating between SARS-CoV-2 infection, healthy controls, and non-SARS-CoV-2 respiratory infections. Targeted liquid chromatography-mass spectrometry lipid profiling was performed on discovery (20 SARS-CoV-2-positive; 37 healthy controls; 22 COVID-19 symptoms but SARS-CoV-2negative) and validation (312 SARS-CoV-2-positive; 100 healthy controls) cohorts. Orthogonal projection to latent structure-discriminant analysis (OPLS-DA) and Kruskal-Wallis tests were applied to establish discriminant lipids, significance, and effect size, followed by logistic regression to evaluate classification performance. OPLS-DA reported separation of SARS-CoV-2 infection from healthy controls in the discovery cohort, with an area under the curve (AUC) of 1.000. A refined panel of discriminant features consisted of six lipids from different subclasses (PE, PC, LPC, HCER, CER, and DCER). Logistic regression in the discovery cohort returned a training ROC AUC of 1.000 (sensitivity = 1.000, specificity = 1.000) and a test ROC AUC of 1.000. The validation cohort produced a training ROC AUC of 0.977 (sensitivity = 0.855, specificity = 0.948) and a test ROC AUC of 0.978 (sensitivity = 0.948, specificity = 0.922). The lipid panel was also able to differentiate SARS-CoV-2-positive individuals from SARS-CoV-2-negative individuals with COVID-19-like symptoms (specificity = 0.818). Lipid profiling and multivariate modelling revealed a signature offering mechanistic insights into SARS-CoV-2, with strong predictive power, and the potential to facilitate effective diagnosis and clinical management.

14.
J Exp Bot ; 72(20): 7229-7246, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34279634

RESUMO

Soil salinity has a serious impact on plant growth and agricultural yield. Inoculation of crop plants with fungal endophytes is a cost-effective way to improve salt tolerance. We used metabolomics to study how Trichoderma harzianum T-22 alleviates NaCl-induced stress in two barley (Hordeum vulgare L.) cultivars, Gairdner and Vlamingh, with contrasting salinity tolerance. GC-MS was used to analyse polar metabolites and LC-MS to analyse lipids in roots during the early stages of interaction with Trichoderma. Inoculation reversed the severe effects of salt on root length in sensitive cv. Gairdner and, to a lesser extent, improved root growth in more tolerance cv. Vlamingh. Biochemical changes showed a similar pattern in inoculated roots after salt treatment. Sugars increased in both cultivars, with ribulose, ribose, and rhamnose specifically increased by inoculation. Salt stress caused large changes in lipids in roots but inoculation with fungus greatly reduced the extent of these changes. Many of the metabolic changes in inoculated cv. Gairdner after salt treatment mirror the response of uninoculated cv. Vlamingh, but there are some metabolites that changed in both cultivars only after fungal inoculation. Further study is required to determine how these metabolic changes are induced by fungal inoculation.


Assuntos
Hordeum , Trichoderma , Hypocreales , Lipídeos , Raízes de Plantas , Salinidade , Tolerância ao Sal , Estresse Fisiológico
15.
Front Plant Sci ; 12: 656683, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995454

RESUMO

Due to their sessile nature, plants rely on root systems to mediate many biotic and abiotic cues. To overcome these challenges, the root proteome is shaped to specific responses. Proteome-wide reprogramming events are magnified in meristems due to their active protein production. Using meristems as a test system, here, we study the major rewiring that plants undergo during cold acclimation. We performed tandem mass tag-based bottom-up quantitative proteomics of two consecutive segments of barley seminal root apexes subjected to suboptimal temperatures. After comparing changes in total and ribosomal protein (RP) fraction-enriched contents with shifts in individual protein abundances, we report ribosome accumulation accompanied by an intricate translational reprogramming in the distal apex zone. Reprogramming ranges from increases in ribosome biogenesis to protein folding factors and suggests roles for cold-specific RP paralogs. Ribosome biogenesis is the largest cellular investment; thus, the vast accumulation of ribosomes and specific translation-related proteins during cold acclimation could imply a divergent ribosomal population that would lead to a proteome shift across the root. Consequently, beyond the translational reprogramming, we report a proteome rewiring. First, triggered protein accumulation includes spliceosome activity in the root tip and a ubiquitous upregulation of glutathione production and S-glutathionylation (S-GSH) assemblage machineries in both root zones. Second, triggered protein depletion includes intrinsically enriched proteins in the tip-adjacent zone, which comprise the plant immune system. In summary, ribosome and translation-related protein accumulation happens concomitantly to a proteome reprogramming in barley root meristems during cold acclimation. The cold-accumulated proteome is functionally implicated in feedbacking transcript to protein translation at both ends and could guide cold acclimation.

16.
mBio ; 12(2)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824211

RESUMO

Leishmania are sandfly-transmitted protists that induce granulomatous lesions in their mammalian host. Although infected host cells in these tissues can exist in different activation states, the extent to which intracellular parasites stages also exist in different growth or physiological states remains poorly defined. Here, we have mapped the spatial distribution of metabolically quiescent and active subpopulations of Leishmania mexicana in dermal granulomas in susceptible BALB/c mice, using in vivo heavy water labeling and ultra high-resolution imaging mass spectrometry. Quantitation of the rate of turnover of parasite and host-specific lipids at high spatial resolution, suggested that the granuloma core comprised mixed populations of metabolically active and quiescent parasites. Unexpectedly, a significant population of metabolically quiescent parasites was also identified in the surrounding collagen-rich, dermal mesothelium. Mesothelium-like tissues harboring quiescent parasites progressively replaced macrophage-rich granuloma tissues following treatment with the first-line drug, miltefosine. In contrast to the granulomatous tissue, neither the mesothelium nor newly deposited tissue sequestered miltefosine. These studies suggest that the presence of quiescent parasites in acute granulomatous tissues, together with the lack of miltefosine accumulation in cured lesion tissue, may contribute to drug failure and nonsterile cure.IMPORTANCE Many microbial pathogens switch between different growth and physiological states in vivo in order to adapt to local nutrient levels and host microbicidal responses. Heterogeneity in microbial growth and metabolism may also contribute to nongenetic mechanisms of drug resistance and drug failure. In this study, we have developed a new approach for measuring spatial heterogeneity in microbial metabolism in vivo using a combination of heavy water (2H2O) labeling and imaging mass spectrometry. Using this approach, we show that lesions contain a patchwork of metabolically distinct parasite populations, while the underlying dermal tissues contain a large population of metabolically quiescent parasites. Quiescent parasites also dominate drug-depleted tissues in healed animals, providing an explanation for failure of some first line drugs to completely eradicate parasites. This approach is broadly applicable to study the metabolic and growth dynamics in other host-pathogen interactions.


Assuntos
Óxido de Deutério , Granuloma/parasitologia , Interações Hospedeiro-Parasita , Processamento de Imagem Assistida por Computador/métodos , Leishmania mexicana/metabolismo , Leishmaniose Cutânea/parasitologia , Espectrometria de Massas/métodos , Pele/patologia , Animais , Modelos Animais de Doenças , Feminino , Marcação por Isótopo , Leishmaniose Cutânea/patologia , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Músculos/parasitologia , Músculos/patologia , Pele/parasitologia
17.
Front Vet Sci ; 7: 218, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32500084

RESUMO

Background: The majority of diabetic cats in remission have abnormal glucose tolerance, and approximately one third relapse within 1 year. Greater understanding of the metabolic characteristics of diabetic cats in remission, and predictors of relapse is required to effectively monitor and manage these cats. Objectives: To identify and compare differences in plasma metabolites between diabetic cats in remission and healthy control cats using a metabolomics approach. Secondly, to assess whether identified metabolites are predictors of diabetic relapse. Animals: Twenty cats in diabetic remission for a median of 101 days, and 22 healthy matched control cats. Methods: Cats were admitted to a clinic, and casual blood glucose was recorded. After a 24 h fast, blood glucose concentration was measured, then a blood sample was taken for metabolomic (GCMS and LCMS) analyses. Three hours later, a simplified intravenous glucose tolerance test (1 g glucose/kg) was performed. Cats were monitored for diabetes relapse for at least 9 months (270 days) after baseline testing. Results: Most cats in remission continued to display impaired glucose tolerance. Concentrations of 16 identified metabolites differed (P ≤ 0.05) between remission and control cats: 10 amino acids and stearic acid (all lower in remission cats), and glucose, glycine, xylitol, urea and carnitine (all higher in remission cats). Moderately close correlations were found between these 16 metabolites and variables assessing glycaemic responses (most |r| = 0.31 to 0.69). Five cats in remission relapsed during the study period. No metabolite was identified as a predictor of relapse. Conclusion and clinical importance: This study shows that cats in diabetic remission have abnormal metabolism.

18.
Environ Sci Pollut Res Int ; 27(15): 18498-18509, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32193739

RESUMO

The potential of cassava (Manihot esculenta Crantz.) for simultaneous Hg and Au phytoextraction was explored by investigating Hg and Au localization in cassava roots through Micro-Proton Induced X-Ray Emission, High-Resolution Transmission Electron Microscopy (HR-TEM) and X-Ray Diffractometry (XRD). The effect of Hg and Au in the cyanogenic glucoside linamarin distribution was also investigated using Matrix Assisted Laser Desorption Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (MALDI-FT-ICR-MS) imaging. Hg was located mainly in the root vascular bundle of plants grown in 50 or 100 µmol L-1 Hg solutions. Au was localized in the epidermis and cortex or in the epidermis and endodermis for 50 and 100 µmol L-1 Au solutions, respectively. For 50 µmol L-1 solutions of both Hg and Au, the two metals were co-localized in the epidermis. When the Hg concentrations were increased to 100 µmol L-1, Au was still localized to a considerable extent in the epidermis while Hg was located in all root parts. HR-TEM and XRD revealed that Au nanoparticles were formed in cassava roots. MALDI-FT-ICR-MS imaging showed linamarin distribution in the roots of control and plants and metal-exposed plants thus suggesting that linamarin might be involved in Hg and Au uptake and distribution.


Assuntos
Manihot , Mercúrio , Nanopartículas Metálicas , Glicosídeos , Ouro , Raízes de Plantas
19.
Front Plant Sci ; 11: 1, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117356

RESUMO

Lipidomics is an emerging technology, which aims at the global characterization and quantification of lipids within biological matrices including biofluids, cells, whole organs and tissues. The changes in individual lipid molecular species in stress treated plant species and different cultivars can indicate the functions of genes affecting lipid metabolism or lipid signaling. Mass spectrometry-based lipid profiling has been used to track the changes of lipid levels and related metabolites in response to salinity stress. We have developed a comprehensive lipidomics platform for the identification and direct qualification and/or quantification of individual lipid species, including oxidized lipids, which enables a more systematic investigation of peroxidation of individual lipid species in barley roots under salinity stress. This new lipidomics approach has improved with an advantage of analyzing the composition of acyl chains at the molecular level, which facilitates to profile precisely the 18:3-containing diacyl-glycerophosphates and allowed individual comparison of lipids across varieties. Our findings revealed a general decrease in most of the galactolipids in plastid membranes, and an increase of glycerophospholipids and acylated steryl glycosides, which indicate that plastidial and extraplastidial membranes in barley roots ubiquitously tend to form a hexagonal II (HII) phase under salinity stress. In addition, salt-tolerant and salt-sensitive cultivars showed contrasting changes in the levels of oxidized membrane lipids. These results support the hypothesis that salt-induced oxidative damage to membrane lipids can be used as an indication of salt stress tolerance in barley.

20.
Ann Bot ; 126(3): 387-400, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32157299

RESUMO

BACKGROUND AND AIMS: Floral chemical defence strategies remain understudied despite the significance of flowers to plant fitness, and the fact that many flowers contain secondary metabolites that confer resistance to herbivores. Optimal defence and apparency theories predict that the most apparent plant parts and/or those most important to fitness should be most defended. To test whether within-flower distributions of chemical defence are consistent with these theories we used cyanogenic glycosides (CNglycs), which are constitutive defence metabolites that deter herbivores by releasing hydrogen cyanide upon hydrolysis. METHODS: We used cyanogenic florets of the genus Lomatia to investigate at what scale there may be strategic allocation of CNglycs in flowers, what their localization reveals about function, and whether levels of floral CNglycs differ between eight congeneric species across a climatic gradient. Within-flower distributions of CNglycs during development were quantified, CNglycs were identified and their localization was visualized in cryosectioned florets using matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI). KEY RESULTS: Florets of all congeneric species studied were cyanogenic, and concentrations differed between species. Within florets there was substantial variation in CNglyc concentrations, with extremely high concentrations (up to 14.6 mg CN g-1 d. wt) in pollen and loose, specialized surface cells on the pollen presenter, among the highest concentrations reported in plant tissues. Two tyrosine-derived CNglycs, the monoglycoside dhurrin and diglycoside proteacin, were identified. MALDI-MSI revealed their varying ratios in different floral tissues; proteacin was primarily localized to anthers and ovules, and dhurrin to specialized cells on the pollen presenter. The mix of transient specialized cells and pollen of L. fraxinifolia was ~11 % dhurrin and ~1.1 % proteacin by mass. CONCLUSIONS: Tissue-specific distributions of two CNglycs and substantial variation in their concentrations within florets suggests their allocation is under strong selection. Localized, high CNglyc concentrations in transient cells challenge the predictions of defence theories, and highlight the importance of fine-scale metabolite visualization, and the need for further investigation into the ecological and metabolic roles of CNglycs in floral tissues.


Assuntos
Proteaceae , Flores , Glicosídeos , Pólen
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...